Vector network equilibrium problems with elastic demands
Igor Konnov ()
Journal of Global Optimization, 2013, vol. 57, issue 2, 531 pages
Abstract:
We consider vector models for complex systems with spatially distributed elements which arise in communication and transportation networks. In order to describe the flow distribution within such a network, we utilize the equilibrium approach, which extends the shortest path one. Being based on this approach, we investigate several networking control problems, with taking into account many factors. As a result, general vector equilibrium problems models with complex behavior of elements are suggested. In particular, they involve elastic demand functions. Due to the presence of many factors, we utilize multicriteria models with respect to different preference relations. The corresponding problems admit efficient solution methods within optimization and equilibrium frameworks. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Network equilibrium; Vector optimization; Elastic demands; Preference relations; Flow distribution; 90C33; 90C29; 90B10; 90B18; 90B50 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-011-9798-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:57:y:2013:i:2:p:521-531
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-011-9798-7
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().