EconPapers    
Economics at your fingertips  
 

Multiobjective DC programs with infinite convex constraints

Shaojian Qu (), Mark Goh, Soon-Yi Wu and Robert Souza

Journal of Global Optimization, 2014, vol. 59, issue 1, 58 pages

Abstract: New results are established for multiobjective DC programs with infinite convex constraints (MOPIC) that are defined on Banach spaces (finite or infinite dimensional) with objectives given as the difference of convex functions. This class of problems can also be called multiobjective DC semi-infinite and infinite programs, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Such problems have not been studied as yet. Necessary and sufficient optimality conditions for the weak Pareto efficiency are introduced. Further, we seek a connection between multiobjective linear infinite programs and MOPIC. Both Wolfe and Mond-Weir dual problems are presented, and corresponding weak, strong, and strict converse duality theorems are derived for these two problems respectively. We also extend above results to multiobjective fractional DC programs with infinite convex constraints. The results obtained are new in both semi-infinite and infinite frameworks. Copyright Springer Science+Business Media New York 2014

Keywords: Multiobjective DC programs with infinite convex constraints; Optimality; Duality; Saddle point; (weak) Pareto efficiency (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0091-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:59:y:2014:i:1:p:41-58

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-013-0091-9

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:59:y:2014:i:1:p:41-58