EconPapers    
Economics at your fingertips  
 

Local reduction based SQP-type method for semi-infinite programs with an infinite number of second-order cone constraints

Takayuki Okuno () and Masao Fukushima ()

Journal of Global Optimization, 2014, vol. 60, issue 1, 25-48

Abstract: The second-order cone program (SOCP) is an optimization problem with second-order cone (SOC) constraints and has achieved notable developments in the last decade. The classical semi-infinite program (SIP) is represented with infinitely many inequality constraints, and has been studied extensively so far. In this paper, we consider the SIP with infinitely many SOC constraints, called the SISOCP for short. Compared with the standard SIP and SOCP, the studies on the SISOCP are scarce, even though it has important applications such as Chebychev approximation for vector-valued functions. For solving the SISOCP, we develop an algorithm that combines a local reduction method with an SQP-type method. In this method, we reduce the SISOCP to an SOCP with finitely many SOC constraints by means of implicit functions and apply an SQP-type method to the latter problem. We study the global and local convergence properties of the proposed algorithm. Finally, we observe the effectiveness of the algorithm through some numerical experiments. Copyright Springer Science+Business Media New York 2014

Keywords: Semi-infinite programming; Second-order cone constraints; SQP-type method; Local reduction method (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0063-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:60:y:2014:i:1:p:25-48

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-013-0063-0

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:60:y:2014:i:1:p:25-48