Proximity measures based on KKT points for constrained multi-objective optimization
Gabriele Eichfelder () and
Leo Warnow ()
Additional contact information
Gabriele Eichfelder: Technische Universität Ilmenau
Leo Warnow: Technische Universität Ilmenau
Journal of Global Optimization, 2021, vol. 80, issue 1, No 4, 63-86
Abstract:
Abstract An important aspect of optimization algorithms, for instance evolutionary algorithms, are termination criteria that measure the proximity of the found solution to the optimal solution set. A frequently used approach is the numerical verification of necessary optimality conditions such as the Karush–Kuhn–Tucker (KKT) conditions. In this paper, we present a proximity measure which characterizes the violation of the KKT conditions. It can be computed easily and is continuous in every efficient solution. Hence, it can be used as an indicator for the proximity of a certain point to the set of efficient (Edgeworth-Pareto-minimal) solutions and is well suited for algorithmic use due to its continuity properties. This is especially useful within evolutionary algorithms for candidate selection and termination, which we also illustrate numerically for some test problems.
Keywords: Multiobjective optimization; KKT approximation; Proximity measure; 90C26; 90C29; 90C46; 90C59 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-020-00971-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:80:y:2021:i:1:d:10.1007_s10898-020-00971-3
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-020-00971-3
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().