Fitting feature-dependent Markov chains
Shane Barratt and
Stephen Boyd ()
Additional contact information
Shane Barratt: Stanford University
Stephen Boyd: Stanford University
Journal of Global Optimization, 2023, vol. 87, issue 2, No 2, 329-346
Abstract:
Abstract We describe a method for fitting a Markov chain, with a state transition matrix that depends on a feature vector, to data that can include missing values. Our model consists of separate logistic regressions for each row of the transition matrix. We fit the parameters in the model by maximizing the log-likelihood of the data minus a regularizer. When there are missing values, the log-likelihood becomes intractable, and we resort to the expectation-maximization (EM) heuristic. We illustrate the method on several examples, and describe our efficient Python open-source implementation.
Keywords: Markov chains; Convex optimization; Expectation maximization; Missing data (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-022-01198-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01198-0
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-022-01198-0
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().