Out-of-sample estimation for a branch-and-bound algorithm with growing datasets
Susanne Sass,
Alexander Mitsos,
Nikolay I. Nikolov and
Angelos Tsoukalas ()
Additional contact information
Susanne Sass: RWTH Aachen University
Alexander Mitsos: RWTH Aachen University
Nikolay I. Nikolov: RWTH Aachen University
Angelos Tsoukalas: RSM Erasmus University Rotterdam
Journal of Global Optimization, 2025, vol. 92, issue 3, No 4, 615-642
Abstract:
Abstract In [Sass et al., Eur. J. Oper. Res., 316 (1): 36 – 45, 2024], we proposed a branch-and-bound (B&B) algorithm with growing datasets for the deterministic global optimization of parameter estimation problems based on large datasets. Therein, we start the B&B algorithm with a reduced dataset and augment it until reaching the full dataset upon convergence. However, convergence may be slowed down by a gap between the lower bounds of the reduced and the original problem, in particular for noisy measurement data. Thus, we propose the use of out-of-sample estimation for improving the lower bounds calculated with reduced datasets. Based on this, we extend the deterministic approach and propose two heuristic approaches. The computational performance of all approaches is compared with the standard B&B algorithm as a benchmark based on real-world estimation problems from process systems engineering, biochemistry, and machine learning covering datasets with and without measurement noise. Our results indicate that the heuristic approaches can improve the final lower bounds on the optimal objective value without cutting off the global solution. Aside from this, we prove that resampling can decrease the variance of the lower bounds calculated based on random initial datasets. In our case study, resampling hardly affects the performance of the approaches which indicates that the B&B algorithm with growing datasets does not suffer from large variances.
Keywords: Nonlinear programming; Spatial branch and bound; Parameter estimation; Overfitting; Resampling (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-025-01514-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:92:y:2025:i:3:d:10.1007_s10898-025-01514-4
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-025-01514-4
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().