Relative Compactness for Capacities, Measures, Upper Semicontinuous Functions and Closed Sets
George L. O'Brien () and
Stephen Watson ()
Additional contact information
George L. O'Brien: York University
Stephen Watson: York University
Journal of Theoretical Probability, 1998, vol. 11, issue 3, 577-588
Abstract:
Abstract We prove an Ascoli theorem for capacities. This theorem which characterizes relatively compact sets of capacities is widely applicable and many Ascoli theorems for particular classes of capacities can immediately be deduced as corollaries. Indeed it is usually necessary only to demonstrate that these classes are closed and then to simplify the characterization when possible. In particular, we show that the proof of the classical Prohorov theorem can be naturally factored into the shorter proof of the Ascoli theorem for capacities and into the somewhat longer proof that the class of probability measures is closed in the class of capacities. We also deduce new and known Ascoli theorems for sup measures, upper semi-continuous functions, the Vietoris hyperspace topology, and various classes of measures.
Keywords: Capacities; narrow topology; relative compactness; equitightness; Prohorov's theorem; Alexander's subbase theorem (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1022659912007 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:11:y:1998:i:3:d:10.1023_a:1022659912007
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1022659912007
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().