An analysis of the parameterized complexity of periodic timetabling
Niels Lindner () and
Julian Reisch ()
Additional contact information
Niels Lindner: Zuse Institute Berlin
Julian Reisch: Synoptics GmbH
Journal of Scheduling, 2022, vol. 25, issue 2, No 2, 157-176
Abstract:
Abstract Public transportation networks are typically operated with a periodic timetable. The periodic event scheduling problem (PESP) is the standard mathematical modeling tool for periodic timetabling. PESP is a computationally very challenging problem: For example, solving the instances of the benchmarking library PESPlib to optimality seems out of reach. Since PESP can be solved in linear time on trees, and the treewidth is a rather small graph parameter in the networks of the PESPlib, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth, or even better, fixed-parameter tractable algorithms. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. Moreover, we show W[1]-hardness of the general feasibility problem with respect to treewidth, which means that we can most likely only accomplish pseudo-polynomial-time algorithms on input networks with bounded tree- or branchwidth. We present two such algorithms based on dynamic programming. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special—but standard—structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib.
Keywords: Periodic event scheduling problem; Periodic timetabling; Treewidth; Branchwidth; Carvingwidth; 68Q17; 90B20; 68Q25; 90B06; 90B35; 90C35; 90C39 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10951-021-00719-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jsched:v:25:y:2022:i:2:d:10.1007_s10951-021-00719-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10951
DOI: 10.1007/s10951-021-00719-1
Access Statistics for this article
Journal of Scheduling is currently edited by Edmund Burke and Michael Pinedo
More articles in Journal of Scheduling from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().