Joint modeling of generalized scale-change models for recurrent event and failure time data
Xiaoyu Wang and
Liuquan Sun ()
Additional contact information
Xiaoyu Wang: Chinese Academy of Sciences
Liuquan Sun: Chinese Academy of Sciences
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2023, vol. 29, issue 1, No 1, 33 pages
Abstract:
Abstract Recurrent event and failure time data arise frequently in many clinical and observational studies. In this article, we propose a joint modeling of generalized scale-change models for the recurrent event process and the failure time, and allow the two processes to be correlated through a shared frailty. The proposed joint model is flexible in that it requires neither the Poisson assumption for the recurrent event process nor a parametric assumption on the frailty distribution. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the resulting estimators are established. Simulation studies are conducted to evaluate the finite sample performances of the proposed method. An application to a medical cost study of chronic heart failure patients is provided.
Keywords: Failure time; Frailty; Generalized scale-change models; Informative censoring; Joint modeling; Recurrent events (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10985-022-09573-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:29:y:2023:i:1:d:10.1007_s10985-022-09573-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-022-09573-5
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().