Investigating non-inferiority or equivalence in time-to-event data under non-proportional hazards
Kathrin Möllenhoff () and
Achim Tresch
Additional contact information
Kathrin Möllenhoff: Heinrich Heine University
Achim Tresch: University of Cologne
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2023, vol. 29, issue 3, No 1, 483-507
Abstract:
Abstract The classical approach to analyze time-to-event data, e.g. in clinical trials, is to fit Kaplan–Meier curves yielding the treatment effect as the hazard ratio between treatment groups. Afterwards, a log-rank test is commonly performed to investigate whether there is a difference in survival or, depending on additional covariates, a Cox proportional hazard model is used. However, in numerous trials these approaches fail due to the presence of non-proportional hazards, resulting in difficulties of interpreting the hazard ratio and a loss of power. When considering equivalence or non-inferiority trials, the commonly performed log-rank based tests are similarly affected by a violation of this assumption. Here we propose a parametric framework to assess equivalence or non-inferiority for survival data. We derive pointwise confidence bands for both, the hazard ratio and the difference of the survival curves. Further we propose a test procedure addressing non-inferiority and equivalence by directly comparing the survival functions at certain time points or over an entire range of time. Once the model’s suitability is proven the method provides a noticeable power benefit, irrespectively of the shape of the hazard ratio. On the other hand, model selection should be carried out carefully as misspecification may cause type I error inflation in some situations. We investigate the robustness and demonstrate the advantages and disadvantages of the proposed methods by means of a simulation study. Finally, we demonstrate the validity of the methods by a clinical trial example.
Keywords: Equivalence; Non-inferiority; Non-proportional hazards; Survival analysis; Time-to-event data (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10985-023-09589-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:29:y:2023:i:3:d:10.1007_s10985-023-09589-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-023-09589-5
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().