Decomposition of the Measure in the Integral Representation of Piecewise Convex Curves
Mariana Nedelcheva ()
Additional contact information
Mariana Nedelcheva: Technical University Varna
A chapter in Generalized Convexity and Related Topics, 2007, pp 359-377 from Springer
Abstract:
Summary The notions of a convex arc and piecewise convex curve in the plane generalize the notion of a convex curve, the latter is usually defined as the boundary of a planar compact convex set with nonempty interior. The integral representation of a piecewise convex curve through a Riemann-Stieltjes integral with a corresponding one-dimensional measure is studied. It is shown that the Minkowski operations known from the convex sets can be generalized to piecewise convex curves. It is shown that the decomposition of the measure in the integral representation of the piecewise convex curve leads to a decomposition of the piecewise convex curve into a sum of corresponding piecewise convex curves. On this base, applying the natural decomposition of the one-dimensional measure into an absolutely continuous function, a jump function, and a singular function, the structure of a piecewise convex curve is investigated. As some curious consequences, the existence of polygons with infinitely many sides and no vertices, and polygons with infinitely many vertices and no sides is shown.
Keywords: Convex arcs; convex curves; piecewise convex curves (search for similar items in EconPapers)
Date: 2007
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lnechp:978-3-540-37007-9_22
Ordering information: This item can be ordered from
http://www.springer.com/9783540370079
DOI: 10.1007/978-3-540-37007-9_22
Access Statistics for this chapter
More chapters in Lecture Notes in Economics and Mathematical Systems from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().