EconPapers    
Economics at your fingertips  
 

Fractional Integration Calculus

Stefan Rostek ()
Additional contact information
Stefan Rostek: University of Tübingen

Chapter 2 in Option Pricing in Fractional Brownian Markets, 2009, pp 5-31 from Springer

Abstract: In order to model randomness in any stochastic model, one may do so by asserting a distribution of the random component. The somewhat more sophisticated approach—especially when modeling dynamical issues—is defining a suitable stochastic process. The overwhelming majority of treatable models based on stochastic processes deals with classical Brownian motion as the source of randomness. This is mainly due to the two main properties of this process, which are its Gaussian character, on the one hand, and its lack of serial correlation, on the other hand. However, though being easy to manage, these features often do not map things as they truly are. Real time series often fluctuate in a non-Gaussian fashion and/or are by all means serially correlated. A great deal of research effort has been invested to get a grip on the first problem; from the onset by introducing random jumps. Currently, researchers suggest so-called alpha-stable processes which are a special group of Levy processes. With the classical Brownian motion, these processes share the property of self-similarity. However, in the literature of financial mathematics, few extensions have beenroposed to overcome the assumption of independent increments for the stochastic processes. The most popular model was introduced by Mandelbrot and van Ness (1968). They hold true the Gaussian character of the process but allow for dependence over the line of time. Figure 2.1 by Cont and Tankov (2004) depicts the relations between important sets of stochastic processes. We see that while the intersection of all three sets is classical Brownian motion, fractional Brownian motion is still Gaussian and self-similar but no longer has independent increments.

Keywords: Brownian Motion; Fractional Brownian Motion; Fractional Integration; Hurst Parameter; Autocovariance Function (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:lnechp:978-3-642-00331-8_2

Ordering information: This item can be ordered from
http://www.springer.com/9783642003318

DOI: 10.1007/978-3-642-00331-8_2

Access Statistics for this chapter

More chapters in Lecture Notes in Economics and Mathematical Systems from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-11
Handle: RePEc:spr:lnechp:978-3-642-00331-8_2