Stochastic Volatility Models
Björn Lutz ()
Additional contact information
Björn Lutz: Hauck & Aufhäuser Asset
Chapter Chapter 4 in Pricing of Derivatives on Mean-Reverting Assets, 2010, pp 55-79 from Springer
Abstract:
Abstract So far, the characteristic function of the log-price at maturity was used without further specifications. In the following chapters, we derive characteristic functions for different settings. Once the characteristic function is obtained, it can be applied in the pricing equations as presented in Chap. 3. We will focus on the pricing of commodity contingent claims. Applications of mean-reverting OU processes for commodity prices were done by Schwartz (1997) and Ross (1997), among others. In both papers, futures prices and hedge ratios are derived, but no stochastic volatility is incorporated. Schwartz (1997) also provides an empirical survey for the proposed models. The commodities involved are crude oil, copper, and gold. Longstaff and Schwartz (1995) apply an Ornstein–Uhlenbeck (OU) model without stochastic volatility to price credit spread options. Following Zhu (2000), Tahani (2004) extends their proposal by incorporation of square-root and OU-stochastic volatility, respectively. In our stochastic volatility models, we will refer to the results and interpretations of Tahani.
Keywords: Stochastic Volatility; Future Price; Stochastic Volatility Model; Adjustment Speed; Integration Node (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lnechp:978-3-642-02909-7_4
Ordering information: This item can be ordered from
http://www.springer.com/9783642029097
DOI: 10.1007/978-3-642-02909-7_4
Access Statistics for this chapter
More chapters in Lecture Notes in Economics and Mathematical Systems from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().