EconPapers    
Economics at your fingertips  
 

Large deviations without principle: join the shortest queue

Ad Ridder () and Adam Shwartz ()

Mathematical Methods of Operations Research, 2005, vol. 62, issue 3, 467-483

Abstract: We develop a methodology for studying “large deviations type” questions. Our approach does not require that the large deviations principle holds, and is thus applicable to a large class of systems. We study a system of queues with exponential servers, which share an arrival stream. Arrivals are routed to the (weighted) shortest queue. It is not known whether the large deviations principle holds for this system. Using the tools developed here we derive large deviations type estimates for the most likely behavior, the most likely path to overflow and the probability of overflow. The analysis applies to any finite number of queues. We show via a counterexample that this system may exhibit unexpected behavior Copyright Springer-Verlag 2005

Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-005-0037-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:62:y:2005:i:3:p:467-483

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s00186-005-0037-1

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:62:y:2005:i:3:p:467-483