Optimal investment strategies with a reallocation constraint
Feyzullah Egriboyun () and
H. Soner ()
Mathematical Methods of Operations Research, 2010, vol. 71, issue 3, 585 pages
Abstract:
We study a Merton type optimization problem under a reallocation constraint. Under this restriction, the stock holdings can not be liquidated faster than a certain rate. This is a common restriction in certain type of investment firms. Our main objective is to study the large time optimal growth rate of the expected value of the utility from wealth. We also consider a discounted infinite horizon problem as a step towards understanding the first problem. A numerical study is done by solving the dynamic programming equations. Under the assumption of a power utility function, an appropriate dimension reduction argument is used to reduce the original problem to a two dimensional one in a bounded domain with convenient boundary conditions. Computation of the optimal growth rate introduces additional numerical difficulties as the straightforward approach is unstable. In this direction, new analytical results characterizing the growth rate as the limit of a sequence of finite horizon problems with continuously derived utility are proved. Copyright Springer-Verlag 2010
Keywords: Dynamic programming; Merton problem; Reallocation constraint; Primary 49J20; 60J60; Secondary 49L20; 35K55 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-010-0306-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:71:y:2010:i:3:p:551-585
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-010-0306-5
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().