Computing generalized Nash equilibria by polynomial programming
Eleftherios Couzoudis () and
Philipp Renner
Mathematical Methods of Operations Research, 2013, vol. 77, issue 3, 459-472
Abstract:
We present a new way to solve generalized Nash equilibrium problems. We assume the feasible set to be compact. Furthermore all functions are assumed to be polynomials. However we do not impose convexity on either the utility functions or the action sets. The key idea is to use Putinar’s Positivstellensatz, a representation result for positive polynomials, to replace each agent’s problem by a convex optimization problem. The Nash equilibria are then feasible solutions to a system of polynomial equations and inequalities. Our application is a model of the New Zealand electricity spot market with transmission losses based on a real dataset. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Generalized nash equilibrium; Parametrized optimization; Real algebraic geometry; Nonconvex optimization; Electricity spot market; Transmission loss (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-012-0422-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:77:y:2013:i:3:p:459-472
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-012-0422-5
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().