A Unified Approach for Hitting Time of Jump Markov Type Processes
Nikolaos Limnios () and
Bei Wu ()
Additional contact information
Nikolaos Limnios: Université de Technologie de Compiègne, Sorbonne University Alliance
Bei Wu: Northwestern Polytechnical University
Methodology and Computing in Applied Probability, 2024, vol. 26, issue 3, 1-10
Abstract:
Abstract This paper investigates the asymptotic analysis of the hitting time of Markov-type jump processes (i.e., semi-Markov, Markov, in continuous or discrete time) with a small probability of entering a non-empty terminal subset. This means that absorption is a rare event. The mean hitting time function of all four type processes obeyed the same equation. We obtain unified results of asymptotic approximation in a series scheme or, equivalently, a functional type of mean hitting time.
Keywords: Hitting time; Markov process; Markov chain; Phase-type distribution; Semi-Markov process; Semi-Markov chain; Rare event; 60J05; 60J25; 60K15 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-024-10100-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:26:y:2024:i:3:d:10.1007_s11009-024-10100-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-024-10100-2
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().