Sideward Contact Tracing in an Epidemic Model with Mixing Groups
Dongni Zhang () and
Martina Favero
Additional contact information
Dongni Zhang: Linköping University
Martina Favero: Stockholm University
Methodology and Computing in Applied Probability, 2025, vol. 27, issue 2, 1-20
Abstract:
Abstract We consider a stochastic epidemic model with sideward contact tracing. We assume that infection is driven by interactions within mixing events (gatherings of two or more individuals). Once an infective is diagnosed, each individual who was infected at the same event as the diagnosed individual is contact traced with some given probability. Assuming few initial infectives in a large population, the early phase of the epidemic is approximated by a branching process with sibling dependencies. To address the challenges given by the dependencies, we consider sibling groups (individuals who become infected at the same event) as macro-individuals and define a macro-branching process. This allows us to derive an expression for the effective macro-reproduction number which corresponds to the effective individual reproduction number and represents a threshold for the behaviour of the epidemic. Through numerical examples, we show how the reproduction number varies with the distribution of the mixing event size, the mean size, the rate of diagnosis and the tracing probability.
Keywords: Epidemic modelling; Contact tracing; Branching process approximation; Reproduction number; 92D30; 60J80 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-025-10160-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10160-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-025-10160-y
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().