Mortality during Hurricane Sandy: the effects of waterfront flood protection on Staten Island, New York
Fanglin Zhang (),
Philip M. Orton,
Malgosia Madajewicz,
Sarath Chandra K. Jagupilla and
Roham Bakhtyar
Additional contact information
Fanglin Zhang: Stevens Institute of Technology
Philip M. Orton: Stevens Institute of Technology
Malgosia Madajewicz: Columbia University
Sarath Chandra K. Jagupilla: Stevens Institute of Technology
Roham Bakhtyar: Stevens Institute of Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 1, No 3, 57-85
Abstract:
Abstract Hard defenses, such as levees or land berms, are often considered the most effective approach to reduce flood risk. This study reveals a potential increase in mortality when hard protections cannot defend a location against low-probability, extreme flood events. Staten Island, New York, suffered devastating damage from Hurricane Sandy, including 23 fatalities, of which 18 occurred in the neighborhoods along the island’s eastern shore. This study demonstrates that the elevated berm along the eastern shore may have contributed to the concentration of fatalities in the area by increasing the speed at which seawater rose, causing some people to be trapped in places where they could not escape rising waters. The study uses a hydrodynamic model to simulate Hurricane Sandy flood conditions, providing water depth, rise rate, and velocity. Statistical analyses show that water rise rate influences mortality, while other flood characteristics and several demographic and socioeconomic factors do not. A model experiment that qualitatively examines flood conditions in the presence of a lower discontinuous berm that historically existed at the location in Midland Beach finds that the increased height and continuity of the berm increased probability of mortality by worsening the water rise rate during Sandy by about 50%. The potential increase in mortality needs to be taken into account when designing coastal protections. If a protection strategy does not prevent low-probability, extreme floods, then there is a trade-off between protection against more frequent floods and increased risk of mortality during extreme floods.
Keywords: Flood risk; Mortality; Hard defense; Overtopping; Hurricane Sandy; Hydrodynamic modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03959-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-03959-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-03959-0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().