EconPapers    
Economics at your fingertips  
 

Probabilistic seismic hazard assessment for some parts of the Indo-Gangetic plains, India

Chhotu Kumar Keshri (), William Kumar Mohanty () and Pratul Ranjan ()
Additional contact information
Chhotu Kumar Keshri: Indian Institute of Technology, Kharagpur
William Kumar Mohanty: Indian Institute of Technology, Kharagpur
Pratul Ranjan: Indian Institute of Technology, Kharagpur

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 1, No 39, 815-843

Abstract: Abstract Indo-Gangetic plains are seismically most vulnerable due to the proximity of adjacent great Himalayan earthquakes and thick alluvium deposits of the Ganga River system. As the urbanization on this plain is increasing, there is a need to quantify seismic hazard in the Indo-Gangetic plains (IGPs). IGP also includes major cities with high population density. A probabilistic seismic hazard analysis (PSHA) plays an essential role in ensuring the safety of buildings, bridges and nuclear power stations. A seismic hazard analysis (SHA) was performed deterministically for most of the atomic power stations in India. An attempt has been made to perform PSHA of the part of Indo-Gangetic plains around Narora nuclear power plant (NNPP), accounting for a wide variety of uncertainties associated with SHA. Geological and tectonic features, as well as seismicity distribution around NNPP, are studied in detail, and four source zones are identified according to the geology, seismotectonics and diffuse seismicity. Mmax values for all the source zones based on 300-km distance around NNPP are 7.61 ± 0.54 for Himalaya zone (Zone 1), 6.12 ± 0.54 for Indo-Gangetic Peninsular India (IGPI) East zone (Zone 2), 6.29 ± 0.54 for IGPI Central zone (Zone 3) and 6.38 ± 0.64 for IGPI West zone (Zone 4). The b-value and return period of earthquakes in these zones are also estimated using Kijko–Sellevoll–Bayes model. The hazard curve for peak ground acceleration (PGA) and pseudo-spectral acceleration (PSA) at 0.2 s for the study region is obtained. Hazard map shows a PGA value of 0.0294 g for 100-year return period, 0.0616 g for 475-year return period design-based earthquakes, 0.1033 g for 2475-year return period maximum considered earthquakes, 0.1508 g for 10K-year return period and 0.2598 g for 100K-year return period level at PGA considering all source zones. Similarly, the hazard curve and maps for PSA at 0.2 s are also plotted. According to seismic zonation map of India, most of the study area lies in Zone 4, and the PGA values reported in seismic zonation map and Global Seismic Hazard Analysis Program for the study area range from 0.3 to 0.4 g. The obtained PGA values denote the maximum expected PGA at bedrock level in the study area.

Keywords: Probabilistic seismic hazard analysis; Narora nuclear power plant; Source zones; Peak ground acceleration; Pseudo-spectral acceleration; Uniform hazard spectra (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04014-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04014-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04014-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04014-8