EconPapers    
Economics at your fingertips  
 

Best optimizer selection for predicting bushfire occurrences using deep learning

Malka N. Halgamuge (), Eshan Daminda and Ampalavanapillai Nirmalathas
Additional contact information
Malka N. Halgamuge: The University of Melbourne
Eshan Daminda: The University of Melbourne
Ampalavanapillai Nirmalathas: The University of Melbourne

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 1, No 40, 845-860

Abstract: Abstract Natural disasters like bushfires pose a catastrophic threat to the Australia and the world’s territorial areas. This fire spreads in a wide area within seconds, and therefore, it is complicated and challenging to mitigate. To minimize risk and increase resilience, identifying bushfire occurrences beforehand and takes necessary actions is critically important. This study focuses on using deep learning technology for predicting bushfire occurrences using real weather data in any given location. Real-time and off-line weather data was collected using Weather Underground API, from 2012 to 2017 ( $$N= 128{,}329$$ N = 128 , 329 ). The obtained weather data are temperature, dew point, pressure, wind speed, wind direction, humidity, and daily rain. An algorithm was developed to collect this data automatically from any destination. Six different optimizer models were analyzed that use in deep learning technology. Then, the comparison was carried out to identify the best model. Selecting an optimizer for training the neural network, in this case, deep learning is a challenging task. Six best optimizers were chosen to compare and identify the best optimizer to estimate potential fire occurrences in given locations. The six optimizers; Adagrad, Adadelta, RMSprop, Adam, Nadam, and SGD were compared based on their processing time, prediction accuracy and error. Our findings suggest Adagrad optimizer provides less prediction time which is a critical factor for fast-spreading bushfires. Our work provides a data collection model for disaster prediction, which could be utilized to collect climatic characteristics and topographical characteristics in with larger samples. The developed methodology could be utilized as a natural disaster prediction model for precise predictions with less error and processing time using real-time data. This study provides an enhanced understanding of finding the locations that fire starts or spot fires which are more likely to occur, and lead to identifying of fire starts that are more likely to spread. Graphic abstract

Keywords: Bushfire; Deep learning; Optimizers; Sparse data; Prediction; Accuracy; RMSprop; Adagrad; Adadelta; Adam; Nadam; SGD (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04015-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04015-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04015-7

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04015-7