A coupled wave, tide and storm surge operational forecasting system for South Africa: validation and physical description
Christo Rautenbach (),
Tania Daniels,
Marc Vos and
Michael A. Barnes
Additional contact information
Christo Rautenbach: South African Weather Service
Tania Daniels: South African Weather Service
Marc Vos: South African Weather Service
Michael A. Barnes: South African Weather Service
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 1, No 65, 1407-1439
Abstract:
Abstract Regional storm tidal levels of the South African coastline are investigated by means of a calibrated and validated numerical model. The model was developed utilizing the shallow water hydrodynamic model, Delft3D. This model was coupled (online) with a non-stationary spectral wave model (developed in the Simulating WAves in the Nearshore (SWAN) numerical code). A local, 4.4 km version of the Unified Model was applied as atmospheric forcing for the coupled system. The models presented in this study form part of the operational marine forecasts of the South African Weather Service, Wave and Storm Surge model. The operational protocol and model calibration and validation are presented via statistical correlations with measured water levels at six South African coastal locations. The main calibration parameters and thus physical drivers were winds, atmospheric pressure and waves. The validated numerical model is used to provide an experimental physical description of South African storm surge characteristics, per coastline. The dominant driver of South African storm surge is winds associated with mid-latitude cyclones. Further novelty in the present study is the quantification of the relative contribution of extreme storm wave set-up to the South African storm surge signal. This wave set-up contributes approximately 20% of the total surge signal in the southwest, with winds contributing approximately 55%. The importance of the continental shelves is also elucidated concerning the frictional shoaling effects of the long surge wave propagation.
Keywords: Storm surge; Waves; Extreme events; Operational forecasting; Numerical modelling; Mid-latitude cyclones; Delft 3D; SWAN; South Africa (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04042-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04042-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04042-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().