Developing nationwide avalanche terrain maps for Norway
Håvard T. Larsen (),
Jordy Hendrikx,
Martine S. Slåtten and
Rune V. Engeset
Additional contact information
Håvard T. Larsen: Norwegian Water Resources and Energy Directorate
Jordy Hendrikx: Montana State University
Martine S. Slåtten: Norwegian Water Resources and Energy Directorate
Rune V. Engeset: Norwegian Water Resources and Energy Directorate
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 3, No 9, 2829-2847
Abstract:
Abstract Snow avalanches are a significant natural hazard in Norway. One method to manage the backcountry avalanche hazard is through detailed mapping of avalanche terrain. Avalanche terrain can be mapped using a variety of methods, including using the Avalanche Terrain Exposure Scale (ATES); however, manual classification of terrain using ATES is time consuming. This study has developed and compared a fully automated algorithm to provide ATES mapping for all of Norway. Our new algorithm is based on the technical model for ATES mapping. This model has specific terrain-based thresholds that can be applied for automated terrain-based modeling. Our algorithm expands on prior work by including the potential release area (PRA) model to identify and calculate the likelihood of an avalanche releasing from a start zone. We also use the raster-based TauDEM-model to determine the avalanche runout length. The final product is a 10-m resolution ATES map. We compared this nationwide ATES map with areas that have been manually mapped by avalanche experts, and find that the automated approach yields similar and reliable results. In addition to comparing mapped areas, we also examine manually mapped linear routes and compare these with the automated mapped ATES areas. Our results suggest that for open terrain, the vast majority of the manually classified tracks are predominantly in the same ATES class as our algorithm. For forested areas, we get mixed results, which can be attributed to a lack of suitable vegetation data at an appropriate scale. Despite this limitation, the current ATES algorithm and resulting spatial data are already valuable as a large portion (~ 70%) of the Norwegian backcountry terrain is above tree line. The automated algorithm is also useful to ensure consistent manual classification across different regions in Norway, or globally, and will permit greater reproducibility and easier updating of mapping for the future.
Keywords: ATES; GIS; Algorithm; Mapping; Avalanche; Terrain (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04104-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04104-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04104-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().