EconPapers    
Economics at your fingertips  
 

Detecting hydrological droughts in ungauged areas from remotely sensed hydro-meteorological variables using rule-based models

Jinyoung Rhee (), Kyungwon Park, Seongkyu Lee, Sangmin Jang and Sunkwon Yoon
Additional contact information
Jinyoung Rhee: APEC Climate Center
Kyungwon Park: APEC Climate Center
Seongkyu Lee: APEC Climate Center
Sangmin Jang: APEC Climate Center
Sunkwon Yoon: Seoul Institute of Technology

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 3, No 16, 2988 pages

Abstract: Abstract As a method of detecting hydrological droughts in ungauged areas, we propose rule-based models using percentiles from remotely sensed key hydro-meteorological variables. Four rule-based models of the Decision Trees, Adaptive Boosting of Decision Trees (Adaboost), Random Forest, and Extremely Randomized Trees are used for their capabilities of modeling nonlinear relationships, and their results are compared to the multiple linear regression. The temporal information of month and the percentiles of key variables of water and energy balance including precipitation, actual evapotranspiration, Normalized Difference Vegetation Index (NDVI), land surface temperature, and soil moisture are used as input variables. Drought severity values are calculated from streamflow percentiles for 3-, 6-, 9-, and 12-month time scales as an indicator for hydrological droughts. Data from six basins of the case study area are used for tuning model parameters and training, and the remaining two basins are used for final evaluation. Models with an ensemble of trees successfully detect hydrological droughts despite the limited input variables (for Adaboost, correlation coefficients ≥ 0.85, mean absolute error ≤ 0.12, root-mean-square error–observations standard deviation ratio ≤ 0.53, and larger Nash–Sutcliffe efficiency of drought severity ≥ 0.72 for the test data set). The most important variable is precipitation, followed by soil moisture (3-month time scale) or NDVI (longer time scales). Hydrological droughts in various time scales are detected in ungauged areas of the case study area. Serious droughts in early 2002, from late 2006 to mid-2007, from early 2008 to 2009, and from mid-2013 to 2017 are detected.

Keywords: Hydrological droughts; Rule-based models; Remote sensing; Ungauged areas (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04114-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04114-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04114-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04114-5