EconPapers    
Economics at your fingertips  
 

Analysis of the surface subsidence induced by sublevel caving based on GPS monitoring and numerical simulation

Xingdong Zhao () and Qiankun Zhu
Additional contact information
Xingdong Zhao: Northeastern University
Qiankun Zhu: Northeastern University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 3, No 20, 3063-3083

Abstract: Abstract This paper describes a case study of the surface subsidence induced by sublevel caving without sill pillars in the Maogong Iron Mine, China. A comprehensive analysis based on GPS monitoring and numerical simulation is proposed and used to analyze the surface subsidence characteristics and damage range. GPS monitoring results showed that the vertical displacement reached 40.3 mm at the JC5 monitoring station and was accompanied by ground crack development. According to the in situ surface subsidence monitoring data and numerical calibration model results, the corresponding critical horizontal strain and angular distortion due to the surface subsidence were estimated as 1.5 × 10−3 and 2.0 × 10−3, respectively. The numerical results showed that the center of the surface subsidence was located in the hanging wall of the orebody, which changed to its far end with increasing mining depth. In the early surface subsidence stage, macro-tension cracks developed in the hanging wall rock mass, and the slabbed rock mass then collapsed into the cave through rotation and/or translation failure. With increasing mining depth, there will be unfilled goaf in the underground, and the rock mass will gradually collapse under high mining-induced stress concentration. Accumulation of caved rocks and the bulking effect result in slow surface subsidence. Notably, surface collapse will not occur suddenly in Maogong Iron Mine, and potential secondary hazards mainly small landslides in the hillside.

Keywords: Sublevel caving; surface subsidence, GPS monitoring, Numerical simulation, Critical strain (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04119-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04119-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04119-0

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04119-0