Site response analysis for deep and soft sedimentary deposits of Dhaka City, Bangladesh
Md. Zillur Rahman,
Sumi Siddiqua () and
A. S. M. Maksud Kamal
Additional contact information
Md. Zillur Rahman: University of Dhaka
Sumi Siddiqua: Okanagan Campus
A. S. M. Maksud Kamal: University of Dhaka
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 106, issue 3, No 24, 2279-2305
Abstract:
Abstract The ground motion intensity of an earthquake is significantly changed when seismic waves propagate from the bedrock to the near-surface soft geological materials. The ground where the shear wave velocity (Vs) exists greater than 760 m/s is generally considered as bedrock. As a common practice in the last three decades, the surface ground motion of a soil site is estimated by multiplying the bedrock motion with the site coefficient that is empirically determined from the time-averaged shear wave velocity in the top 30 m (Vs30) of the site. The site coefficient is defined as the ratio of the ground motion intensity at the ground surface to that of the bedrock. If the bedrock of a site exists at a depth of greater than 30 m, the site effect from the depth of 30 m to the bedrock is not accounted in the Vs30-based site coefficient. In Dhaka City, the minimum depth of the bedrock is approximately 175 m. Therefore, the use of the Vs30-based site coefficient to estimate the surface ground motion is not appropriate for the soft and deep sedimentary deposits of this city. In this study, site response analysis using the Vs30-based site coefficient, linear, equivalent-linear, and nonlinear approaches has been performed to estimate the surface ground motion at different sites of Dhaka City and to compare the results of different approaches. It is observed that the surface ground motion is decreased with increasing the depth of the bedrock due to low shear strain and viscous damping in the soft sedimentary deposits.
Keywords: Response analysis; Ground motion; Site effect; Response spectra; Site coefficient; Shear wave velocity (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04543-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04543-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04543-w
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().