A novel framework for flood susceptibility assessment using hybrid analytic hierarchy process-based machine learning methods
Chiranjit Singha,
Neha Chakraborty,
Satiprasad Sahoo,
Quoc Bao Pham () and
Yunqing Xuan
Additional contact information
Chiranjit Singha: Visva-Bharati (A Central University)
Neha Chakraborty: Maulana Abul Kalam Azad University of Technology
Satiprasad Sahoo: International Center for Agricultural Research in the Dry Areas (ICARDA)
Quoc Bao Pham: University of Silesia in Katowice
Yunqing Xuan: Swansea University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 11, No 55, 13765-13810
Abstract:
Abstract This study evaluates the effectiveness of the analytic hierarchy process (AHP) based on six machine learning models in predicting flood susceptibility in the Dwarakeswar river basin in Eastern India. Fifteen flood conditioning factors were employed as input predictors. The dataset underwent a series of pre-processing procedures, including conducting a statistical Pearson correlation, ordinary least squares (OLS), and multi-collinearity analysis, to identify the best flood-contributing factors. Additionally, the Information Gain Ratio (InGR) feature selection technique was utilized to assess the relevance of features. The accuracy of the models during the validation phases was assessed using various statistical metrics such as accuracy, kappa score, sensitivity, specificity, positive predictive value, negative predictive value, and the area under the receiver operating characteristic curve (AUC). Although all models demonstrated robust flood prediction abilities (AUC > 0.988), the AHP-Gradient Boosting Machine (GBM) model exhibited the highest performance (AUC = 0.996). This indicates that, among the models examined, the AHP-GBM model holds significant promise for evaluating flood-prone regions and facilitating effective planning and management of flood hazards. This model identified 12.68% and 5.14% of the study area as very high and high flood susceptibility zones, respectively. The SHapley Additive exPlanations (SHAP) analysis shows that the Modified Normalized Difference Water Index (MNDWI), rainfall, elevation, Normalized Difference Vegetation Index (NDVI), proximity to rivers, drainage density, and Terrain Ruggedness Indices (TRI) are the best influences on flood probability. Based on the climate projections from future Coupled Model Intercomparison Project Phase 6 (CMIP6) models (SSP2 4.5, SSP5 8.5), the southern region of the study area has been pinpointed as a hotspot for flooding vulnerability, with a susceptibility level classified as very high, encompassing 16.68% of the area.
Keywords: Flood susceptibility mapping (FSM); Analytic hierarchy process; Machine learning; Remote sensing (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-025-07335-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:11:d:10.1007_s11069-025-07335-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-025-07335-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().