Estimating location and size of historical earthquake by combining archaeology and geology in Umm-El-Qanatir, Dead Sea Transform
Neta Wechsler (),
Oded Katz (),
Yehoshua Dray,
Ilana Gonen and
Shmuel Marco ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2009, vol. 50, issue 1, 27-43
Abstract:
We study the Byzantine-to-Ummayad (6th–8th century) archaeological site of Umm-El-Qanatir, located 10 km east of the Dead Sea Transform (DST) in northern Israel. The site was damaged by an earthquake-induced landslide, and in this work we use slope stability analysis to constrain the historical seismic acceleration that occurred along the northern segment of the DST. Umm-El-Qanatir archaeological site is located on a slope of a canyon and contains evidence for earthquake-related damage, including fallen columns and walls, horizontal shift of heavy masonry blocks, and complete burial of ceramic pots and farming tools beneath fallen ceilings. A water pool that collected spring water is displaced nearly one meter by the landslide. The artifacts from the village and the spring area indicate that people inhabited the site until the middle of the 8th century. We argue that the destruction, which forced the abandonment of Umm-El-Qanatir together with nearby settlements, was associated with the earthquake of January 18, 749 CE. In order to evaluate the ground acceleration related to the above earthquake, we back-analyze the stability of a failed slope, which cut and displaced the water-pool, using slope stability software (Slope/W). The results show that the slope is statically stable and that high values of horizontal seismic acceleration (>0.3 g) are required to induce slope failure. Subsequently, we use the Newmark displacement method to calculate the earthquake magnitude needed to cause the slope failure as a function of distance from the site. The results (attributed to the 749 CE earthquake) show that a M W > 7.0 earthquake up to 25 km from the site could have induced the studied landslide. Copyright Springer Science+Business Media B.V. 2009
Keywords: Dead-Sea transform; Historical earthquakes; Landslides; Archaeoseismology; Peak ground acceleration (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-008-9315-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:50:y:2009:i:1:p:27-43
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-008-9315-6
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().