Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption
Annamaria Vicari (),
Alessia Ciraudo,
Ciro Negro,
Alexis Herault and
Luigi Fortuna
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2009, vol. 50, issue 3, 539-550
Abstract:
Techniques capable of measuring lava discharge rates during an eruption are important for hazard prediction, warning, and mitigation. To this end, we developed an automated system that uses thermal infrared satellite MODIS data to estimate time-averaged discharge rate. MODIS-derived time-varying discharge rates were used to drive lava flow simulations calculated using the MAGFLOW cellular automata model, allowing us to simulate the discharge rate-dependent spread of lava as a function of time. During the July 2006 eruption of Mount Etna (Sicily, Italy), discharge rates were estimated at regular intervals (i.e., up to 2 times/day) using the MODIS data. The eruption lasted 10 days and produced a ~3-km-long lava flow field. Time-averaged discharge rates extracted from 13 MODIS images were utilized to produce a detailed chronology of lava flow emplacement, demonstrating how infrared satellite data can be used to drive numerical simulations of lava flow paths during an ongoing eruptive event. The good agreement between simulated and mapped flow areas indicates that model-based inundation predictions, driven by time-varying discharge rate data, provide an excellent means for assessing the hazard posed by ongoing effusive eruptions. Copyright Springer Science+Business Media B.V. 2009
Keywords: MAGFLOW model; Lava flow simulation; Etna volcano (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-008-9306-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:50:y:2009:i:3:p:539-550
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-008-9306-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().