On the initialization of tropical cyclones with a three dimensional variational analysis
Chi-Sann Liou () and
Keith Sashegyi
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2012, vol. 63, issue 3, 1375-1391
Abstract:
A method of initializing tropical cyclones in high-resolution numerical models is developed by modifying a data assimilation system, the NRL atmospheric variational data assimilation system (NAVDAS), which was designed for general mesoscale weather prediction using a three-dimensional variational (3DVAR) analysis with intermittent updates. The method includes the following three upgrades to overcome difficulties resulting from tropical cyclone initialization with the NAVDAS analysis. First, synthetic observation soundings are generated on 9 vertical levels at 49 points for strong storms (v max > 23.1 m s −1 ) and 41 points for weak storms around each cyclone center to supplement the observations used by the analysis. Secondly, a vortex relocation method for nested grids is developed to correct the cyclone position in the background fields of the analysis for each nested mesh. Lastly, the 3DVAR analysis is modified to gradually reduce the horizontal length scale and geostrophic coupling constraint near the center of a tropical cyclone for minimizing the problems introduced by improper covariances and coupling constraint used in the analysis. The synthetic observations significantly improve the intensity and structure of the analysis and the track forecast. The vortex relocation significantly improves the first guess background, avoiding the large analysis corrections that would be needed to correct cyclone position, and reducing the imbalance introduced by such large analysis increments. The modifications to the analysis length scale and geostrophic coupling constraint successfully improve the inner core analysis, providing a tighter circulation, and reducing the underestimate of the mass field gradient. Among the three upgrades, the vortex relocation provides the largest improvement to the tropical cyclone initialization and forecast. Copyright US Government 2012
Keywords: Tropical cyclone initialization; Synthetic observations; Vortex relocation; 3DVAR analysis for tropical cyclones (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-011-9838-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:63:y:2012:i:3:p:1375-1391
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-011-9838-0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().