EconPapers    
Economics at your fingertips  
 

Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters

Chandra Kishtawal, Dev Niyogi (), Anil Kumar, Monica Bozeman and Olivia Kellner

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2012, vol. 63, issue 3, 1527-1542

Abstract: Using the HURDAT best track analysis of track and intensity of tropical cyclones that made landfall over the continental United States during the satellite era (1980–2005), we analyze the role of land surface variables on the cyclone decay process. The land surface variables considered in the present study included soil parameters (soil heat capacity and its surrogate soil bulk density), roughness, topography and local gradients of topography. The sensitivity analysis was carried out using a data-adaptive genetic algorithm approach that automatically selects the most suitable variables by fitting optimum empirical functions that estimates cyclone intensity decay in terms of given observed variables. Analysis indicates that soil bulk density (soil heat capacity) has a dominant influence on cyclone decay process. The decayed inland cyclone intensities were found to be positively correlated with the cube of the soil bulk density (heat capacity). The impact of the changes in soil bulk density (heat capacity) on the decayed cyclone intensity is higher for higher intensity cyclones. Since soil bulk density is closely related to the soil heat capacity and inversely proportional to the thermal diffusivity, the observed relationship can also be viewed as the influence of cooling rate of the land surface, as well as the transfer of heat and moisture underneath a land-falling storm. The optimized prediction function obtained by statistical model processes in the present study that predicts inland intensity changes during 6-h interval showed high fitness index and small errors. The performance of the prediction function was tested on inland tracks of eighteen hurricanes and tropical storms that made landfall over the United States between 2001 and 2010. The mean error of intensity prediction for these cyclones varied from 1.3 to 15.8 knots (0.67–8.12 m s −1 ). Results from the data-driven analysis thus indicate that soil heat flux feedback should be an important consideration for the inland decay of tropical cyclones. Experiments were also undertaken using Weather Research Forecasting (WRF) Advanced Research Version (ARW ver 3.3) to assess the sensitivity of the soil parameters (roughness, heat capacity and bulk density) on the post-landfall structure of select storms. The model was run with 1-km grid spacing, limited area single domain with boundary conditions from the North American Regional Reanalysis. Of different experiments, only the surface roughness change and soil bulk density (heat capacity) change experiments showed some sensitivity to the intensity change. The WRF results thus have a low sensitivity to the land parameters (with only the roughness length showing some impact). This calls for reassessing the land surface response on post-landfall characteristics with more detailed land surface representation within the mesoscale and hurricane modeling systems. Copyright Springer Science+Business Media B.V. 2012

Keywords: Tropical cyclone; Land-falling cyclones; Hurricane intensity; Land surface feedback; Soil heat flux; Inland decay (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-011-0015-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:63:y:2012:i:3:p:1527-1542

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-011-0015-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:63:y:2012:i:3:p:1527-1542