EconPapers    
Economics at your fingertips  
 

An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008)

Monica Laureano Bozeman (), Dev Niyogi (), S. Gopalakrishnan, Frank Marks, Xuejin Zhang and Vijay Tallapragada

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2012, vol. 63, issue 3, 1543-1571

Abstract: While tropical cyclones (TCs) usually decay after landfall, Tropical Storm Fay (2008) initially developed a storm central eye over South Florida by anomalous intensification overland. Unique to the Florida peninsula are Lake Okeechobee and the Everglades, which may have provided a surface feedback as the TC tracked near these features around the time of peak intensity. Analysis is done with the use of an ensemble model-based approach with the Developmental Testbed Center (DTC) version of the Hurricane WRF (HWRF) model using an outer domain and a storm-centered moving nest with 27- and 9-km grid spacing, respectively. Choice of land surface parameterization and small-scale surface features may influence TC structure, dictate the rate of TC decay, and even the anomalous intensification after landfall in model experiments. Results indicate that the HWRF model track and intensity forecasts are sensitive to three features in the model framework: land surface parameterization, initial boundary conditions, and the choice of planetary boundary layer (PBL) scheme. Land surface parameterizations such as the Geophysical Fluid Dynamics Laboratory (GFDL) Slab and Noah land surface models (LSMs) dominate the changes in storm track, while initial conditions and PBL schemes cause the largest changes in the TC intensity overland. Land surface heterogeneity in Florida from removing surface features in model simulations shows a small role in the forecast intensity change with no substantial alterations to TC track. Copyright Springer Science+Business Media B.V. 2012

Keywords: Hurricane WRF; Noah; Landfalling tropical cyclones; Post-landfall intensification; Land–atmosphere interactions; Boundary layer processes (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-011-9841-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:63:y:2012:i:3:p:1543-1571

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-011-9841-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:63:y:2012:i:3:p:1543-1571