A similarity-based quantitative model for assessing regional debris-flow hazard
Guangxu Liu (),
Erfu Dai (),
Quansheng Ge,
Wenxiang Wu and
Xinchuang Xu
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 69, issue 1, 295-310
Abstract:
Debris flows belong to sudden disasters which are difficult to forecast. Thus, a detailed and coherent hazard assessment seems a necessary step to prevent or relieve such disasters and mitigate the risk effectively. Previous researchers have proposed several methods, such as regression analysis, fuzzy mathematics, and artificial neural networks for debris-flow hazard assessment. However, these methods need further improvements to eliminate the high relativity existing in their results. The current study reported a similarity-based debris-flow hazard assessment model to determine hazard levels of debris flow in regions, with steps like determining hazard-level-type regions, selecting environmental factors and calculating the similarities between the assessment-pending regions and assessed hazard-level-type ones. This methodology was then employed to assess the regional debris hazard of Yunnan Province in China as a case study and was verified via comparison with field surveys. As the results indicate, the proposed similarity-based debris-flow risk assessment model is simple and efficient and can improve the comparability and reliability of the assessment to some degree. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Similarity-based method; Debris-flow hazard; Yunnan Province; Disaster hazard (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0709-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:69:y:2013:i:1:p:295-310
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-0709-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().