Application of a nonlinear model in landfall number forecasting for tropical cyclones in China
Lihua Feng () and
Gaoyuan Luo
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 73, issue 3, 1475-1482
Abstract:
Meteorological phenomena evolve according to both external influences and their own internal physical processes. Nevertheless, multivariate analysis ignores the evolution of individual meteorological events overtime, while time series analysis does not make full use of the implicit information on influencing factors. Instead, the threshold autoregressive model considers not only the additive effects of influencing factors, but also the processes controlling the evolution of the meteorological phenomena. Meanwhile, this approach deals with the nonlinear problems of meteorological processes through piecewise linearization, yielding improved fit to observations and better forecasts. The pooled variance, mean square error, and maximum fitted error of TARSO(2, (1, 1), (1, 3)) are all smaller than those obtained using TAR(2, 1, 2). The errors of the landfall number associated with TARSO(2, (1, 1), (1, 3)) are smaller than those associated with TAR(2, 1, 2). At present, however, time series data for meteorological processes are generally short, such that the corresponding information system is incomplete. Therefore, extrapolation should not be too far-ranging. It is strongly suggested that the current information system should be supplemented by the addition of new information each year, in the hope of improving future model accuracy and forecast skill. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Tropical cyclone; Landfall number; Influencing factor; Threshold autoregressive; Forecast (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1146-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:73:y:2014:i:3:p:1475-1482
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1146-z
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().