EconPapers    
Economics at your fingertips  
 

Analysis and prediction of a catastrophic Indian coastal heat wave of 2015

Venkata B. Dodla (), G. Ch. Satyanarayana and Srinivas Desamsetti
Additional contact information
Venkata B. Dodla: K L University
G. Ch. Satyanarayana: K L University
Srinivas Desamsetti: K L University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 87, issue 1, No 20, 395-414

Abstract: Abstract Heat wave of 2015 over India, a natural disaster with 2500 human deaths, was studied to understand the characteristics, associated atmospheric circulation patterns and to evaluate its predictability. Although temperatures are highest in May over India, occurrence of heat wave conditions over southeast coastal parts of India in May 2015 had been unanticipated. Analyses revealed that isolated region of Andhra Pradesh (AP) had experienced severe heat wave conditions during May 23–27, 2015, with temperatures above 42 °C and the sudden escalation by 7–10 °C within a short span of 2–3 days. Short-range weather predictions with Advanced Research Weather Research and Forecasting model at 3-km resolution, up to 72-h lead time, have been found accurate with statistical metrics of small mean absolute error and root-mean-square error and high index of agreement confirming the predictability of the heat wave evolution. Analyses have indicated that regional atmospheric pressure disparities within the Eurasia region, i.e., increased pressure gradient between the Middle East and India, had been responsible for increased northwest wind flow over to northwest India and to southeast India which have advected higher temperatures. Estimates of warm air advection have shown heat accumulation over AP region, due to sea breeze effect. The study led to the conclusion that changing pressure gradients between Middle East and India, enhancement of northwest wind flow with warm air advection and sea breeze effect along southeast coast blocking the free flow have contributed to the observed heat wave episode over coastal Andhra Pradesh.

Keywords: Heat wave; Indian coast; Numerical prediction; Temperature advection; Atmospheric circulations (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2769-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2769-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-017-2769-7

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2769-7