EconPapers    
Economics at your fingertips  
 

Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)

Muhammad Farooq (), Muhammad Shafique and Muhammad Shahzad Khattak
Additional contact information
Muhammad Farooq: University of Peshawar
Muhammad Shafique: University of Peshawar
Muhammad Shahzad Khattak: University of Engineering and Technology

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2019, vol. 97, issue 2, No 2, 477-492

Abstract: Abstract Floods are among the most devastating and recurring natural hazards and have caused extensive economic losses to human lives and infrastructures around the world. Swat valley in northern Pakistan is prone to frequent floods and was severely affected by the Flood2010 in the recent past. Flood hazard assessment is a non-structural strategy for flood mitigation in addition to the structure measure. In this study, 60 km long reach of the River Swat (Khwazakhela Bridge–Chakdara Bridge) was modeled using the HEC-RAS 2D model and high-resolution 12-m WorldDEM. The model was calibrated and validated for only historical maximum flood event, i.e., Flood2010 using Manning’s ‘n’ values, flood stage at the Chakdara Bridge and satellite imagery-based Flood2010-observed extent. In addition, flood model sensitivity to the DEM was carried out and simulated maximum depth was 12, 13, 14, and 25 m for the 12-m WorldDEM, 30-m SRTM, 30-m ALOS and 30-m ASTER DEMs, respectively. Designed hydrographs were prepared for 2, 5, 10, 25, 50, and 100-year return periods based on the Flood2010-observed hydrograph. Finally, the model was simulated for 2, 5, 10, 25, 50, and 100-year return periods with full momentum equation as the calculation method. Simulated extents based on the 12-m WorldDEM were used for the preparation of flood hazard maps. Landcover exposure to the designed flood events shows that agriculture including orchards is the major potential affected class with affected areas up to 55 Km2. The developed flood hazard maps will enable the policy makers to mainstream flood hazard assessment in the planning and development process for mitigating flood hazard in Swat Valley.

Keywords: HEC-RAS 2D; Flood hazard; Synthetic hydrograph; Model sensitivity; Swat River (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-019-03638-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:97:y:2019:i:2:d:10.1007_s11069-019-03638-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-019-03638-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:97:y:2019:i:2:d:10.1007_s11069-019-03638-9