EconPapers    
Economics at your fingertips  
 

Determination of extreme precipitation threshold and analysis of its effective patterns (case study: west of Iran)

Shahab Shaffie (), GholamAli Mozaffari () and Younes Khosravi ()
Additional contact information
Shahab Shaffie: Yazd University
GholamAli Mozaffari: Yazd University
Younes Khosravi: University of Zanjan

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2019, vol. 99, issue 2, No 14, 857-878

Abstract: Abstract Flash floods caused by extreme rainfalls are one of the most significant natural hazards. In the present study, the precipitation data of 69 meteorological and climatological stations with temporal intervals (1961–2010) were obtained to determine the threshold of extreme precipitation as well as analyzing its significant patterns in the western regions of Iran. To determine the threshold of extreme precipitation, the theory of extreme value method was applied. In this method, precipitation of 22 mm and more than that covers 30% of the area had been identified and extracted as extreme precipitation. Therefore, 119 extreme precipitation events during the study period had been identified. Then, four patterns were analyzed using cluster analysis. After that, network data of geopotential height levels of 200, 300, 400 and 500 hPa for these days, from re-analyzed data series of NCEP/NCAR in the range of 10°–80°E and 0°–70°N and in 13,460 cells 2.5° × 2.5° were extracted by GrADS software. The results of the study showed that the most important humidity source for precipitation was the Mediterranean Sea, the Black Sea and the Red Sea, respectively. The upward vertical speed at different levels, located on the east and southeast cyclones of upper levels, which matches low pressure of the Earth’s surface, indicating unstable conditions in the region. Also, placing cutoff lows due to westerlies activities with warm and humid air advection at the surface and upper-level cold air were the main causes of severe atmospheric instability in the west of Iran.

Keywords: Extreme precipitation; Threshold; Jet stream; West of Iran (WOI) (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-019-03779-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03779-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-019-03779-x

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03779-x