The green and economical supply of coated board with intermodal distribution: an implementation of novel evolutionary algorithm
Rizwan Shoukat and
Zhang Xiaoqiang ()
Additional contact information
Rizwan Shoukat: Southwest Jiaotong University
Zhang Xiaoqiang: Southwest Jiaotong University
Operational Research, 2024, vol. 24, issue 2, No 8, 34 pages
Abstract:
Abstract In practice, factories emit significant amounts of GHGs, which have been linked to health and environmental issues. These gases are produced during industrial processes and, in many cases, during transportation. Second, historically, generic costs such as production fixed and variable costs, transportation costs, and inventory holding costs have dominated the overall cost of the supply chain (SC). The objective of this research is to model a SC problem to minimize costs while also accounting for GHG emissions from facility to facility (Shanghai, China to Lahore, Pakistan). Initially, the total expenses and GHG emissions of the SC are modeled as a bi-objective mixed-integer linear programme (BOMILP). In comparison to other optimization models, the developed BOMILP model simultaneously optimizes transportation costs and GHG emissions while taking weight and distance constraints into account in the intermodal network. The real-world data comes from one of Asia's largest paper and board industries. To solve the BOMILP problem, a metaheuristic technique such as a multiobjective genetic algorithm (MOGA) and multiobjective bat algorithm (MOBA) is used. To improve the performance of the MOGA, we used multiple crossover operators. Random crossover operator selection and collision crossover are two strategies that have been implemented. The collision crossover is based on elastic collision, and the random crossover operator-selection strategy randomly selects the best operator. The Pareto optimum solution of the MOGA assists decision-makers in making the best trade-off between cost and emissions. Our findings show that the cost of producing (reeling, coating, rewinding) and storing white bleach board (WBB) accounts for 72% of the total cost of the SC, while GHG emissions are 83,484 kg CO2e in the delivery of 1 tonne of material from Shanghai, China to Lahore, Pakistan via intermodal transportation.
Keywords: Transportation costs; GHG emissions; Metaheuristic technique; Multiobjective genetic algorithm; Pareto optimum solution (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12351-024-00825-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:24:y:2024:i:2:d:10.1007_s12351-024-00825-w
Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351
DOI: 10.1007/s12351-024-00825-w
Access Statistics for this article
Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis
More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().