Business failure prediction models with high and stable predictive power over time using genetic programming
Ángel Beade,
Manuel Rodríguez and
José Santos ()
Additional contact information
Ángel Beade: University of A Coruña
Manuel Rodríguez: University of A Coruña
José Santos: CITIC (Centre for Information and Communications Technology Research), University of A Coruña
Operational Research, 2024, vol. 24, issue 3, No 18, 41 pages
Abstract:
Abstract This study focuses on the deterioration of the predictive power and the analysis of the predictive stability of business failure prediction models, an aspect not sufficiently analysed in previous research. Insolvency prediction is considered with three temporal horizons (1 year, 3 years and 5 years prior to failure). The Genetic Programming (GP) tool has been used to achieve prediction models with high performance and stability over time, considering a long post-learning period in the stability analysis. In addition, novel scenarios representative of actual model use are proposed and considered, as well as metrics to assess the deterioration of the models’ predictive power. The optimised GP prediction models (in the three temporal horizons) present a higher performance with respect to external references and, more importantly in relation to the objective of our study, the selected GP models substantially improve on the stability reported in previous studies, meeting the pursued requirements of degree of deterioration (less than 5%) and stability (Pearson’s coefficient of variation less than 5%). Thus, the predictions of the GP models after the learning are very stable (period 2008–2019), to a certain extent immune, with respect to their environment, responding adequately in both procyclical and countercyclical modes, all of which is particularly relevant as this period includes a strong recession and a strong recovery. This should help to increase the reliability of business failure prediction models. Moreover, the relevance of including variables other than the usual financial ratios as predictors of failure is confirmed.
Keywords: Business failure; Financial ratios; Prediction stability; Evolutionary computation; Genetic programming (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12351-024-00852-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:24:y:2024:i:3:d:10.1007_s12351-024-00852-7
Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351
DOI: 10.1007/s12351-024-00852-7
Access Statistics for this article
Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis
More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().