EconPapers    
Economics at your fingertips  
 

A Multi-criteria MILP Formulation for Energy Aware Hybrid Flow Shop Scheduling

Sven Schulz ()
Additional contact information
Sven Schulz: TU Dresden

A chapter in Operations Research Proceedings 2016, 2018, pp 543-549 from Springer

Abstract: Abstract Managing energy consumption more sustainably and efficiently has been gaining increasing importance in all industrial planning processes. Energy aware scheduling (EAS) can be seen as a part of that trend. Overall, EAS can be subdivided into three main approaches. In detail, the energy consumption can be reduced by specific planning, time-dependent electricity cost might be exploited or the peak power may be decreased. In contrast to the majority of EAS models these ideas are adopted simultaneously in the proposed new extensive MILP formulation. In order to affect peak load and energy consumption, variable discrete production rates as well as heterogeneous parallel machines with different levels of efficiency are considered. As a result, the interdependencies of different energy aware scheduling approaches and especially a dilemma between peak power minimization and demand charge reduction can be shown.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:oprchp:978-3-319-55702-1_72

Ordering information: This item can be ordered from
http://www.springer.com/9783319557021

DOI: 10.1007/978-3-319-55702-1_72

Access Statistics for this chapter

More chapters in Operations Research Proceedings from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:oprchp:978-3-319-55702-1_72