EconPapers    
Economics at your fingertips  
 

Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring

Amulya Kumar Mahto () and Yogesh Mani Tripathi ()
Additional contact information
Amulya Kumar Mahto: Indian Institute of Technology Patna
Yogesh Mani Tripathi: Indian Institute of Technology Patna

OPSEARCH, 2020, vol. 57, issue 4, No 1, 1043-1069

Abstract: Abstract We consider estimation of the multicomponent stress-strength reliability for inverted exponentiated Rayleigh distributions under progressive Type II censoring. It is assumed that stress and strength variables follow inverted exponentiated Rayleigh distributions with a common scale parameter. Point and interval estimates of the reliability are obtained using maximum likelihood and Bayesian approaches when common parameter is unknown. Bayes estimates are derived using Lindley approximation and Markov chain Monte Carlo methods. The case of known common parameter is also considered. Then uniformly minimum variance unbiased estimator of the reliability is derived. We have also computed the exact Bayes estimates under the squared error loss function. The asymptotic and HPD intervals of the reliability are constructed under this case also. Proposed methods are compared numerically using simulations and comments are obtained. Finally, a real data set is analyzed for illustration purposes.

Keywords: Bayes estimate; HPD interval; Lindley method; Maximum likelihood estimate; Multicomponent stress-strength model; 62F10; 62F15; 62N02 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s12597-020-00448-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:opsear:v:57:y:2020:i:4:d:10.1007_s12597-020-00448-7

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/12597

DOI: 10.1007/s12597-020-00448-7

Access Statistics for this article

OPSEARCH is currently edited by Birendra Mandal

More articles in OPSEARCH from Springer, Operational Research Society of India
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:opsear:v:57:y:2020:i:4:d:10.1007_s12597-020-00448-7