Learning judgment benchmarks of customers from online reviews
Xingli Wu and
Huchang Liao ()
Additional contact information
Xingli Wu: Sichuan University
Huchang Liao: Sichuan University
OR Spectrum: Quantitative Approaches in Management, 2021, vol. 43, issue 4, No 10, 1125-1157
Abstract:
Abstract Online reviews play an important role for the purchasing decision of customers. One challenge is that different reviewers have different judgment benchmarks when making online reviews, which can mislead purchasing decisions. Specifically, the same star rating may correspond to different levels of sentiment for different reviewers because of the explicit preference differences in individuals. This study explores the personal judgment benchmarks through a preference learning process. Considering the nonlinear cognition of reviewers, we propose a marginal value function with smooth shapes and clear parameters to model the scores of online reviews. A mathematical programming model is established to predict the specific marginal value function for each reviewer. Two kinds of performance accurateness are defined to measure the performance of the learning model. We evaluate two empirical data sets extracted from TripAdvisor.com to deepen the understanding of personal judgment benchmarks. A simulation study is conducted to validate the proposed model. The results have important theoretical and practical implications for purchasing decisions based on online reviews.
Keywords: Purchasing decision; Online review; Preference learning; Marginal value function; Judgment benchmark (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s00291-021-00639-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:orspec:v:43:y:2021:i:4:d:10.1007_s00291-021-00639-8
Ordering information: This journal article can be ordered from
http://www.springer. ... research/journal/291
DOI: 10.1007/s00291-021-00639-8
Access Statistics for this article
OR Spectrum: Quantitative Approaches in Management is currently edited by Rainer Kolisch
More articles in OR Spectrum: Quantitative Approaches in Management from Springer, Gesellschaft für Operations Research e.V.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().