Sample Size Determination for Cost-Effectiveness Trials
Andrew Willan ()
PharmacoEconomics, 2011, vol. 29, issue 11, 933-949
Abstract:
Methods for determining sample size requirements for cost-effectiveness studies are reviewed and illustrated. Traditional methods based on tests of hypothesis and power arguments are given for the incremental costeffectiveness ratio and incremental net benefit (INB). In addition, a full Bayesian approach using decision theory to determine optimal sample size is given for INB. The full Bayesian approach, based on the value of information, is proposed in reaction to concerns that traditional methods rely on arbitrarily chosen error probabilities and an ill-defined notion of the smallest clinically important difference. Furthermore, the results of cost-effectiveness studies are used for decision making (e.g. should a new intervention be adopted or the old one retained), and employing decision theory, which permits optimal use of current information and the optimal design of new studies, provides a more consistent approach. Copyright Springer International Publishing AG 2011
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.2165/11587130-000000000-00000 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:pharme:v:29:y:2011:i:11:p:933-949
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/40273
DOI: 10.2165/11587130-000000000-00000
Access Statistics for this article
PharmacoEconomics is currently edited by Timothy Wrightson and Christopher I. Carswell
More articles in PharmacoEconomics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().