EconPapers    
Economics at your fingertips  
 

Predicting Metropolitan Crime Rates Using Machine Learning Techniques

Saba Moeinizade and Guiping Hu ()
Additional contact information
Saba Moeinizade: Iowa State University
Guiping Hu: Iowa State University

A chapter in Smart Service Systems, Operations Management, and Analytics, 2020, pp 77-86 from Springer

Abstract: Abstract The concept of smart city has been gaining public interests with the considerations of socioeconomic development and quality of life. Smart initiatives have been proposed in multiple domains, such as health, energy, and public safety. One of the key factors that impact the quality of life is the crime rate in a metropolitan area. Predicting crime patterns is a significant task to develop more efficient strategies either to prevent crimes or to improve the investigation efforts. In this research, we use machine learningMachine learning techniques to solve a multinomial classificationMultinomial classification problem where the goal is to predict the crime categories with spatiotemporal data. As a case study, we use San Francisco crime data from San Francisco Police Department (SFPD). Various classification methods such as Multinomial Logistic Regression, Random Forests, Lightgbm, and Xgboost have been adopted to predict the category of crime. Feature engineering was employed to boost the model performance. The results demonstrate that our proposed classifier outperforms other published models.

Keywords: Machine learning; Multinomial classification; Crime prediction (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:prbchp:978-3-030-30967-1_8

Ordering information: This item can be ordered from
http://www.springer.com/9783030309671

DOI: 10.1007/978-3-030-30967-1_8

Access Statistics for this chapter

More chapters in Springer Proceedings in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-13
Handle: RePEc:spr:prbchp:978-3-030-30967-1_8