Solving Portfolio Optimization Problems Using AMPL
Alexis Karakalidis and
Angelo Sifaleras ()
Additional contact information
Alexis Karakalidis: University of Macedonia
Angelo Sifaleras: University of Macedonia
A chapter in Operational Research in Business and Economics, 2017, pp 167-184 from Springer
Abstract:
Abstract This work presents a new optimization software library which contains a number of financial optimization models. Roughly speaking, the majority of these portfolio allocation models aim to compute the optimal allocation investment weights, and thus they are particularly useful for supporting investment decisions in financial markets. Algebraic modeling languages are very well suited for prototyping and developing optimization models. All the financial optimization models have been implemented in AMPL mathematical programming modeling language and solved using either Gurobi Optimizer or Knitro (for those models having general nonlinear objectives). This proposed software library includes several well-known portfolio allocation models, such as the Markowitz mean-variance model, the Konno-Yamazaki absolute deviation model, the Black-Litterman model, Young’s minimax model and others. These models aim either to minimize the variance of the portfolios, or maximize the expected returns subject to a number of constraints, or include portfolios with a risk-free asset, transaction costs, and others. Furthermore, we also present a literature review of financial optimization software packages and discuss the benefits and drawbacks of our proposed portfolio allocation model library. Since this is a work in progress, new models are still being added to the proposed library.
Keywords: Financial optimization; Mathematical programming; AMPL (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:prbchp:978-3-319-33003-7_8
Ordering information: This item can be ordered from
http://www.springer.com/9783319330037
DOI: 10.1007/978-3-319-33003-7_8
Access Statistics for this chapter
More chapters in Springer Proceedings in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().