Connected Cars and Driving Pattern: An Analytical Approach to Risk-Based Insurance
SrinivasaRao Valluru ()
Additional contact information
SrinivasaRao Valluru: HCL Technologies
A chapter in Advances in Analytics and Applications, 2019, pp 131-137 from Springer
Abstract:
Abstract Insurance companies are witnessing a significant drop in their profit margins particularly in the segment of vehicle insurance due to heavy competition in the industry. Insurance companies are trying to improve their customer base by retaining existing customers and launching new policies with additional benefits. Customers are expecting insurance policies which match to their requirements and at the same time, companies also want to charge more premium for the customers with risky driving behaviour and less for safe driving. Insurance companies are reducing costs with the help of historical risk data and advanced analytics to improve their profits. Insurance companies are capturing real-time vehicle movement data through IoT to monitor the driving behaviour of their customers. By applying advanced analytics on this data, insurance companies can study customers driving pattern to assess the risk involved in it. In this study, we are presenting an analytical approach to categorize driving patterns using advanced machine learning techniques which will lead to risk-based insurance premium. It will help insurance companies to provide personalized services to their customers and in assisting insurance companies in the process of claims approval when an accident took place.
Keywords: K-means clustering; Decision tree; Fuzzy forest; Random forest (RF); Support vector machine (SVM) (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:prbchp:978-981-13-1208-3_12
Ordering information: This item can be ordered from
http://www.springer.com/9789811312083
DOI: 10.1007/978-981-13-1208-3_12
Access Statistics for this chapter
More chapters in Springer Proceedings in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().