EconPapers    
Economics at your fingertips  
 

Unifying Differential Item Functioning in Factor Analysis for Categorical Data Under a Discretization of a Normal Variant

Yu-Wei Chang, Nan-Jung Hsu and Rung-Ching Tsai ()
Additional contact information
Yu-Wei Chang: Feng Chia University
Nan-Jung Hsu: National Tsing-Hua University
Rung-Ching Tsai: National Taiwan Normal University

Psychometrika, 2017, vol. 82, issue 2, No 6, 382-406

Abstract: Abstract The multiple-group categorical factor analysis (FA) model and the graded response model (GRM) are commonly used to examine polytomous items for differential item functioning to detect possible measurement bias in educational testing. In this study, the multiple-group categorical factor analysis model (MC-FA) and multiple-group normal-ogive GRM models are unified under the common framework of discretization of a normal variant. We rigorously justify a set of identified parameters and determine possible identifiability constraints necessary to make the parameters just-identified and estimable in the common framework of MC-FA. By doing so, the difference between categorical FA model and normal-ogive GRM is simply the use of two different sets of identifiability constraints, rather than the seeming distinction between categorical FA and GRM. Thus, we compare the performance on DIF assessment between the categorical FA and GRM approaches through simulation studies on the MC-FA models with their corresponding particular sets of identifiability constraints. Our results show that, under the scenarios with varying degrees of DIF for examinees of different ability levels, models with the GRM type of identifiability constraints generally perform better on DIF detection with a higher testing power. General guidelines regarding the choice of just-identified parameterization are also provided for practical use.

Keywords: differential item functioning; identifiability; discretization of a normal variant; graded response models (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11336-017-9562-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-017-9562-0

Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2

DOI: 10.1007/s11336-017-9562-0

Access Statistics for this article

Psychometrika is currently edited by Irini Moustaki

More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-017-9562-0