EconPapers    
Economics at your fingertips  
 

Moments of the Noncentral Chi Distribution

John Lawrence ()
Additional contact information
John Lawrence: US Food and Drug Administration

Sankhya A: The Indian Journal of Statistics, 2023, vol. 85, issue 2, No 6, 1243-1259

Abstract: Abstract Explicit closed form formulas for the integer moments of the noncentral chi distribution are given. The mean of the noncentral chi distribution is the average distance between a fixed point and a random vector with a standard multivariate normal distribution. Previous published expressions for the mean use the hypergeometric function or infinite series. In the case where the dimension, d, is even, the formula presented here can be expressed using polynomials of order (d − 1)/2, the square root function, and standard normal density and distribution functions. In the case where the dimension is odd, the formula involves two Bessel functions of the first kind. Calculation of the other positive integer moments is also discussed.

Keywords: Normal distribution; Goodness-of-fit testing; Hypergeometric function; Bessel function (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13171-021-00262-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-021-00262-3

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13171

DOI: 10.1007/s13171-021-00262-3

Access Statistics for this article

Sankhya A: The Indian Journal of Statistics is currently edited by Dipak Dey

More articles in Sankhya A: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sankha:v:85:y:2023:i:2:d:10.1007_s13171-021-00262-3