EconPapers    
Economics at your fingertips  
 

Preliminary analysis of COVID-19 academic information patterns: a call for open science in the times of closed borders

J. Homolak (), I. Kodvanj and D. Virag
Additional contact information
J. Homolak: University of Zagreb School of Medicine
I. Kodvanj: University of Zagreb School of Medicine
D. Virag: University of Zagreb School of Medicine

Scientometrics, 2020, vol. 124, issue 3, No 42, 2687-2701

Abstract: Abstract The Pandemic of COVID-19, an infectious disease caused by SARS-CoV-2 motivated the scientific community to work together in order to gather, organize, process and distribute data on the novel biomedical hazard. Here, we analyzed how the scientific community responded to this challenge by quantifying distribution and availability patterns of the academic information related to COVID-19. The aim of this study was to assess the quality of the information flow and scientific collaboration, two factors we believe to be critical for finding new solutions for the ongoing pandemic. The RISmed R package, and a custom Python script were used to fetch metadata on articles indexed in PubMed and published on Rxiv preprint server. Scopus was manually searched and the metadata was exported in BibTex file. Publication rate and publication status, affiliation and author count per article, and submission-to-publication time were analysed in R. Biblioshiny application was used to create a world collaboration map. Preliminary data suggest that COVID-19 pandemic resulted in generation of a large amount of scientific data, and demonstrates potential problems regarding the information velocity, availability, and scientific collaboration in the early stages of the pandemic. More specifically, the results indicate precarious overload of the standard publication systems, significant problems with data availability and apparent deficient collaboration. In conclusion, we believe the scientific community could have used the data more efficiently in order to create proper foundations for finding new solutions for the COVID-19 pandemic. Moreover, we believe we can learn from this on the go and adopt open science principles and a more mindful approach to COVID-19-related data to accelerate the discovery of more efficient solutions. We take this opportunity to invite our colleagues to contribute to this global scientific collaboration by publishing their findings with maximal transparency.

Keywords: COVID-19; Open science; Data; Bibliometric; Pandemic (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03587-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:124:y:2020:i:3:d:10.1007_s11192-020-03587-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-020-03587-2

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:124:y:2020:i:3:d:10.1007_s11192-020-03587-2