Covering of High-Dimensional Cubes and Quantization
Anatoly Zhigljavsky () and
Jack Noonan ()
Additional contact information
Anatoly Zhigljavsky: Cardiff University
Jack Noonan: Cardiff University
SN Operations Research Forum, 2020, vol. 1, issue 3, 1-32
Abstract:
Abstract As the main problem, we consider covering of a d-dimensional cube by n balls with reasonably large d (10 or more) and reasonably small n, like n = 100 or n = 1000. We do not require the full coverage but only 90% or 95% coverage. We establish that efficient covering schemes have several important properties which are not seen in small dimensions and in asymptotical considerations, for very large n. One of these properties can be termed ‘do not try to cover the vertices’ as the vertices of the cube and their close neighbourhoods are very hard to cover and for large d there are far too many of them. We clearly demonstrate that, contrary to a common belief, placing balls at points which form a low-discrepancy sequence in the cube, results in a very inefficient covering scheme. For a family of random coverings, we are able to provide very accurate approximations to the coverage probability. We then extend our results to the problems of coverage of a cube by smaller cubes and quantization, the latter being also referred to as facility location. Along with theoretical considerations and derivation of approximations, we provide results of a large-scale numerical investigation.
Keywords: Covering; Quantization; Facility location; Space-filling; Computer experiments; High dimension; 90C26; 65K99; 65B99 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s43069-020-0015-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:snopef:v:1:y:2020:i:3:d:10.1007_s43069-020-0015-8
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/43069
DOI: 10.1007/s43069-020-0015-8
Access Statistics for this article
SN Operations Research Forum is currently edited by Marco Lübbecke
More articles in SN Operations Research Forum from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().